翻訳と辞書 |
Hadamard's lemma : ウィキペディア英語版 | Hadamard's lemma In mathematics, Hadamard's lemma, named after Jacques Hadamard, is essentially a first-order form of Taylor's theorem, in which we can express a smooth, real-valued function exactly in a convenient manner. ==Statement== Let ƒ be a smooth, real-valued function defined on an open, star-convex neighborhood ''U'' of a point ''a'' in ''n''-dimensional Euclidean space. Then ƒ(''x'') can be expressed, for all ''x'' in ''U'', in the form: : where each ''gi'' is a smooth function on ''U'', ''a'' = (''a''1,...,''a''''n''), and ''x'' = (''x''1,...,''x''''n'').
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Hadamard's lemma」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|